
1Scientific Reports |          (2019) 9:3535  | https://doi.org/10.1038/s41598-019-40419-7

www.nature.com/scientificreports

Impaired mitochondrial oxidative 
phosphorylation capacity in 
epicardial adipose tissue is 
associated with decreased 
concentration of adiponectin and 
severity of coronary atherosclerosis
Takayuki Nakajima1, Takashi Yokota   1, Yasushige Shingu2, Akira Yamada3, Yutaka Iba3, 
Kosuke Ujihira3, Satoru Wakasa2, Tomonori Ooka2, Shingo Takada1, Ryosuke Shirakawa1, 
Takashi Katayama1, Takaaki Furihata1, Arata Fukushima1, Ryosuke Matsuoka4, 
Hiroshi Nishihara5, Flemming Dela6,7, Katsuhiko Nakanishi3, Yoshiro Matsui2 & 
Shintaro Kinugawa   1

Epicardial adipose tissue (EAT), a source of adipokines, is metabolically active, but the role of 
EAT mitochondria in coronary artery disease (CAD) has not been established. We investigated the 
association between EAT mitochondrial respiratory capacity, adiponectin concentration in the EAT, and 
coronary atherosclerosis. EAT samples were obtained from 25 patients who underwent elective cardiac 
surgery. Based on the coronary angiographycal findings, the patients were divided into two groups; 
coronary artery disease (CAD; n = 14) and non-CAD (n = 11) groups. The mitochondrial respiratory 
capacities including oxidative phosphorylation (OXPHOS) capacity with non-fatty acid (complex I and 
complex I + II-linked) substrates and fatty acids in the EAT were significantly lowered in CAD patients. 
The EAT mitochondrial OXPHOS capacities had a close and inverse correlation with the severity of 
coronary artery stenosis evaluated by the Gensini score. Intriguingly, the protein level of adiponectin, 
an anti-atherogenic adipokine, in the EAT was significantly reduced in CAD patients, and it was 
positively correlated with the mitochondrial OXPHOS capacities in the EAT and inversely correlated 
with the Gensini score. Our study showed that impaired mitochondrial OXPHOS capacity in the EAT 
was closely linked to decreased concentration of adiponectin in the EAT and severity of coronary 
atherosclerosis.

Growing evidence suggests that the accumulation of ectopic fat such as visceral abdominal fat and intramyocel-
lular lipid is closely linked to insulin resistance and atherosclerosis1. Cardiac adipose tissue is also recognized as 
an ectopic fat that is divided into two parts of adipose tissue by the pericardium; epicardial adipose tissue (EAT) 
and pericardial adipose tissue (PAT). The EAT surrounds the heart and the coronary arteries within the peri-
cardium, whereas the PAT surrounds the heart but is distributed outside the pericardium. The EAT constitutes 
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approximately 20% of the total ventricular weight of a healthy adult2. Because of its anatomical proximity to the 
coronary artery, the role of EAT in coronary artery disease (CAD) has drawn much attention3,4.

Although several investigations demonstrated that EAT volume is increased in patients with cardiovascular 
disease in association with disease severity5–7, some clinical studies did not find significant associations between 
EAT volume and severity of coronary artery stenosis8,9. Accordingly, a question about whether increased EAT 
volume is linked to coronary artery stenosis ‘directly’ or in combination with other risk factors such as functional 
changes of the EAT arises.

The EAT is metabolically active; it secrets various bioactive molecules (including adipokines) that are related 
to energy metabolism and inflammation10. Because there is no fibrous fascial layer that impedes the diffusion 
of these adipokines from the EAT to the coronary arteries, functional changes in the EAT may directly affect 
coronary artery sclerosis via a paracrine pathway4. Mitochondria play a key role in the maintenance of cellular 
function as a main energy source, and mitochondrial dysfunction including decreased mitochondrial respiration 
is thought to be involved in the pathogenesis of cardiovascular disease11–13. An in vitro study has shown that the 
lowered mitochondrial respiratory capacity results in decreased secretion of adiponectin, an anti-inflammatory 
and anti-atherogenic adipokine, from adipocytes14, which raises the possibility that lowered EAT mitochondrial 
respiratory capacity may result in reduced secretion of adiponectin from the EAT, and the lack of adiponectin in 
the EAT may contribute to the development of coronary atherosclerosis.

However, there is no study that investigated EAT mitochondrial respiratory capacity in human. Here we exam-
ined: (1) whether EAT mitochondrial respiratory capacity was lowered in CAD patients, (2) whether lowered 
EAT mitochondrial respiratory capacity was associated with protein levels of adiponectin in the EAT and severity 
of coronary artery stenosis, and (3) whether protein levels of adiponectin in the EAT was associated with severity 
of coronary artery stenosis.

Results
Patient characteristics.  The characteristics of the patients in the CAD and non-CAD groups are summa-
rized in Table 1. There was no significant difference in age, gender, body mass index, and visceral abdominal fat 
area between the CAD and non-CAD groups. The left ventricular ejection fraction (LVEF) evaluated by echo-
cardiography before cardiac surgery was comparable between the groups. CAD patients had significantly higher 
prevalences of diabetes and dyslipidemia compared to non-CAD patients. The majority of CAD patients (86%) 
had multivessel CAD.

Hemoglobin A1c values were significantly higher and serum levels of adiponectin were significantly lower 
in CAD patients. In contrast, there was no significant difference in fasting triglyceride or low- or high-density 
lipoprotein cholesterol levels between the groups, although more CAD patients than non-CAD patients were 
taking statins.

Non-CAD (n = 11) CAD (n = 14) P value

Age, yrs 68 ± 14 68 ± 11 0.99

Male/female 4/7 8/6 0.30

BMI, kg/m2 23.6 ± 4.2 24.3 ± 3.6 0.66

Visceral abdominal fat area, cm2 62.1 ± 49.9 96.9 ± 44.0 0.08

LVEF, % 56 ± 16 50 ± 15 0.37

CAD

  1-vessel disease 0 (0) 2 (14)

  2-vessel disease 0 (0) 4 (29)

  3-vessel disease 0 (0) 8 (57)

Complications

  Hypertension 6 (55) 10 (71) 0.38

  Diabetes mellitus 2 (18) 11 (79) 0.003

  Dyslipidemia 2 (18) 13 (93) <0.001

Medication

  β-blocker 4 (36) 8 (57) 0.30

  ACE inhibitor or ARB 4 (36) 9 (64) 0.24

  Statins 2 (18) 14 (100) <0.001

  Antidiabetics 2 (18) 6 (43) 0.19

HbA1c, % 5.6 ± 0.3 7.2 ± 1.3 <0.001

Triglyceride, mmol/L 1.58 ± 1.31 1.32 ± 0.12 0.63

HDL-cholesterol, mmol/L 1.47 ± 0.50 1.26 ± 0.29 0.22

LDL-cholesterol, mmol/L 2.58 ± 0.95 2.46 ± 0.79 0.75

Serum adiponectin, µg/mL 12.3 ± 5.6 4.6 ± 4.0 <0.001

Table 1.  Patient characteristics. Values are mean ± SD or n (%). ACE, angiotensin converting enzyme; ARB, 
angiotensin receptor blocker; BMI, body mass index; CAD, coronary artery disease; HbA1c, hemoglobin A1c; 
HDL, high-density lipoprotein; LDL, low-density lipoprotein; LVEF, left ventricular ejection fraction.
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Mitochondrial respiratory capacity in the EAT.  Representative graphs of the mitochondrial respira-
tory capacity in the permeabilized EAT in the CAD and non-CAD groups are provided in Fig. 1a. CAD patients 
showed a lower LEAK respiration (i.e., non-ADP stimulated respiration) with complex I-linked substrates in their 
EAT compared to non-CAD patients (Fig. 1b). The mitochondrial OXPHOS capacity (i.e., ADP-stimulated res-
piration) with complex I-linked substrates in the EAT was significantly reduced in the CAD group compared to 
the non-CAD group (Fig. 1b). CAD patients had lower capacities of complex I-linked and complex I + II-linked 
OXPHOS under the existence of fatty acids in the EAT compared to non-CAD patients (Fig. 1b). Moreover, the 
maximal electron transfer system (ETS) capacity in the EAT evaluated after FCCP titration was significantly 
decreased in the CAD group compared to the non-CAD group (Fig. 1b).

Association between the mitochondrial respiratory capacity in the EAT and the severity of cor-
onary artery stenosis.  We examined whether the lowered mitochondrial respiratory capacity in the EAT 
was associated with the Gensini score, a parameter of the severity of coronary artery stenosis. Our analyses of all 

Figure 1.  The mitochondrial respiratory capacity in the EAT. (a) Representative graphs of mitochondrial 
respiratory capacity in the EAT in the non-coronary artery disease (non-CAD, n = 11) and CAD patients 
(n = 14). (b) The mitochondrial respiratory capacity at each state with non-fatty acid and fatty acid substrates 
in the EAT was lowered in the CAD group. Bar: mean ± SD. *P < 0.05. CI, complex I-linked substrates; CI + II, 
complex I + II-linked substrates; ETS, maximal electron transfer system capacity; FAO, fatty acid oxidation; 
LEAK, leak-state respiration (non-ADP stimulated respiration); OXPHOS, oxidative phosphorylation capacity 
(ADP-stimulated respiration).
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patients demonstrated that the mitochondrial respiratory capacities at all states with non-fatty acid and fatty acid 
substrates in the EAT were inversely correlated with the Gensini score (Fig. 2a–e). In addition, when the analysis 
was performed only in CAD patients, the Gensini score had a significant and inverse correlation with only EAT 
mitochondrial OXPHOS capacity with complex I-linked substrates (Fig. 2b).

Protein content of the adiponectin in the EAT.  The results of our analysis of the adiponectin synthesis 
in the EAT are illustrated in Fig. 3a,b. The representative immunohistochemical staining shows decreased adi-
ponectin staining around the lipid droplet in adipocytes of the EAT in the CAD compared to non-CAD groups 
(Fig. 3a). The adiponectin protein level of the EAT was significantly decreased in CAD patients compared to 
non-CAD patients (Fig. 3b).

Association between protein content of adiponectin in the EAT and the mitochondrial res-
piratory capacity in the EAT or the severity of coronary artery stenosis.  Both the mitochondrial 
OXPHOS capacity and the maximal ETS capacity with non-fatty acid and fatty acid substrates were positively 
correlated with the protein levels of adiponectin in the EAT (Fig. 3d–g). In contrast, there was no correlation 

Figure 2.  The association between the mitochondrial respiratory capacity in the EAT and the severity of 
coronary artery sclerosis. White and black circles indicate non-CAD (n = 11) and CAD patients (n = 14), 
respectively. A solid line indicates a significant correlation in all patients and a dashed line indicates a significant 
correlation only in CAD patients. Abbreviations are explained in the Fig. 1 legend.
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Figure 3.  The protein content of adiponectin in the EAT. (a) Representative images of immunohistochemical 
staining of adiponectin in the EAT of the non-CAD and CAD patients. Adiponectin is stained in dark brown in 
the cytosol around the lipid droplet in the adipocyte of the EAT (see red arrows), and intensity of adiponectin 
staining appears to be weak in a CAD patient compared to a non-CAD patient. (b) The protein levels of 
adiponectin in EAT in non-CAD (n = 11) and CAD patients (n = 13). Bar: mean ± SD. *P < 0.05. (c–g) The 
association the protein content of adiponectin and the mitochondrial respiratory capacity in the EAT. (h) The 
association between the protein content of adiponectin and the severity of coronary artery stenosis. White 
and black circles indicate non-CAD (n = 11) and CAD patients (n = 13), respectively. A solid line indicates a 
significant correlation in all patients and a dashed line indicates a significant correlation only in CAD patients. 
Abbreviations are explained in the Fig. 1 legend.
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between the mitochondrial respiration in the LEAK with complex I-linked substrates and the adiponectin con-
centration in the EAT (Fig. 3c). In addition, the protein levels of adiponectin in the EAT had an inverse correla-
tion with the Gensini score in all patients (Fig. 3h). The protein levels of adiponectin in the EAT were positively 
correlated with the mitochondrial OXPHOS capacity with complex I and fatty acid-linked substrates (Fig. 3e) and 
with complex I + II and fatty acid-linked substrates (Fig. 3f), or the maximal ETS capacity with non-fatty acid and 
fatty acid substrates (Fig. 3g) even in CAD patients. There was also a significant correlation between the Gensini 
score and the pretein content of adiponectin in the EAT in CAD patients (Fig. 3h).

EAT volume.  The EAT volume of CAD patients was greater than that of non-CAD patients (Fig. 4a), but 
the EAT volume was not correlated with the Gensini score (Fig. 4b). The EAT volume was inversely correlated 
with the mitochondrial complex I-linked OXPHOS capacity in the EAT in all patients (Fig. 4d), but there was 
no significant correlation between the EAT volume and other mitochondrial respiratory capacities in the EAT 
(Fig. 4c,e–g). In addition, there was no significant correlation between the EAT volume and adiponectin levels 
in the EAT (Fig. 4h). The EAT volume was not correlated with any parameters when the analysis was performed 
only in CAD patients.

Discussion
The main finding of the present study is that the mitochondrial respiratory capacity in the EAT was significantly 
lowered in CAD patients compared to non-CAD patients who underwent cardiac surgery. The lowered EAT 
mitochondrial respiratory capacity was closely associated with the severity of coronary artery stenosis evaluated 
by the Gensini score calculated based on the findings of coronary angiography. In contrast, there was no signifi-
cant correlation between the EAT volume and the severity of coronary artery stenosis, although the EAT volume 
was larger in CAD patients compared to non-CAD patients. Intriguingly, protein content of adiponectin in the 
EAT was decreased in CAD patients, and this was associated with the lowered mitochondrial respiratory capacity 
and the severity of coronary artery stenosis in this tissue.

We observed that CAD patients had lower mitochondrial respiratory capacity with non-fatty acid and fatty 
acid substrates in their EAT. To our knowledge, this is the first study to demonstrate the mitochondrial respiratory 
capacity in human EAT. Unlike metabolically active organs such as the heart and skeletal muscle, the bioenerget-
ics in adipose tissue have been poorly studied in part because of the smaller mitochondrial content in such tissue. 
However, recent advances in high-resolution respirometry and progress in the methodology of the measurement 
of mitochondrial respiratory capacity have enabled us to accurately evaluate mitochondrial function with a small 
sample size even in metabolically less-active tissues like the adipose tissue than the heart and skeletal muscle 
which have continuously high energy requirements for muscle contraction.

Kraunsøe et al. demonstrated that the visceral abdominal fat had a higher level of mitochondrial activity 
than the subcutaneous fat in same subjects15, which seems reasonable because the visceral abdominal fat is an 
important source of a number of bioactive molecules including adipokines. In humans, the EAT is also an active 
endocrine organ that secrets a greater amount of adipokines compared to the subcutaneous fat16. Thus, the mito-
chondrial respiratory capacity in the adipose tissues including the EAT may contribute to the metabolic activity of 
these tissues and may play a role in the maintenance of adipose tissue function such as the secretion of adipokines 
and energy homeostasis (e.g., storage of fatty acids).

In our study, CAD patients had a higher prevalence of type 2 diabetes than non-CAD patients. A previous 
study has shown that gene expression related to the mitochondrial ETS including complex I and II is downregu-
lated in the visceral abdominal fat in individuals with type 2 diabetes, which might be linked to insulin resistance 
via metabolic disturbance in this fat tissue17. Accordingly, type 2 diabetes might be related to the lowered mito-
chondrial respiratory capacity in the EAT in CAD patients.

In the adult heart, EAT commonly surrounds coronary arteries, and there is no structure such as fibrous fascia 
that separates a coronary artery and its surrounding adipose tissue4. Our present findings demonstrated that the 
EAT volume in CAD patients was greater than that of non-CAD patients, independently of the amount of visceral 
abdominal fat, which is consistent with previous studies7. However, we and others showed that there was no cor-
relation between the EAT volume and the severity of coronary artery stenosis9. Accordingly, changes in the qual-
ity of EAT rather than changes in the quantity of EAT may be a stronger risk factor for coronary artery sclerosis. 
Indeed, we found that the impaired mitochondrial respiratory capacity in the EAT is closely correlated with the 
severity of coronary artery stenosis. Yudkin et al. proposed that there is a contribution of the local fat depot to the 
pathogenesis of atherosclerosis in neighboring arteries via a paracrine pathway18, which supports the hypothesis 
that impaired EAT mitochondrial respiration directly or indirectly contributes to coronary atherosclerosis.

We measured the protein content of adiponectin in the EAT samples, and it was significantly decreased in 
CAD patients, which is consistent with previous studies19,20. Importantly, the protein levels of the adiponectin in 
the EAT samples were positively correlated with the mitochondrial OXPHOS capacity with non-fatty acid and 
fatty acid substrates in the EAT. An in vitro study demonstrated that the lowered mitochondrial respiration in 
adipocytes resulted in reduced adiponectin secretion from these cells14, suggesting that mitochondrial OXPHOS 
capacity in the EAT might regulate adiponectin secretion from the EAT. We showed that adiponectin concentra-
tion in the EAT had an inverse correlation with severity of coronary atherosclerosis. Because adiponectin has an 
anti-atherogenic and anti-inflammatory effect on the blood vessels, the reduced protein content of adiponectin in 
the EAT may play a role in the progression of coronary atherosclerosis.

Other possible mechanisms can be suggested to explain the role of the functional change of EAT in the patho-
genesis and progression of CAD. It was reported that the gene expression of proinflammatory cytokines such as 
tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and monocyte chemoattractant protein-1 (MCP-1) in 
the EAT is increased in CAD patients16. Increased proinflammatory cytokine release from the EAT may lead to 
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the aggravation of inflammation in neighboring coronary arteries and thus subsequently stimulate atherosclero-
sis16,18. A phenotype change of M1 and M2 macrophages infiltrating into the EAT may also contribute to coronary 
atherosclerosis via the cytokine release from the EAT21.

Figure 4.  The EAT volume. (a) Increased EAT volume in the CAD patients. Bar: mean ± SD. *P < 0.05. (b) The 
association between the EAT volume and the severity of coronary artery stenosis. (c–g) The association between 
the EAT volume and the mitochondrial respiratory capacity in the EAT. (h) The association between the EAT 
volume and the protein level of adiponectin in the EAT. White and black circles indicate non-CAD (n = 11) and 
CAD patients (n = 14 except for (h) [n = 13]), respectively. A solid line indicates a significant correlation in all 
patients. Abbreviations are explained in the Fig. 1 legend.
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We have some study limitations that should be acknowledged. First, our sample size was small. Additional 
studies with larger sample sizes are needed to determine whether impaired mitochondrial respiratory capacity 
in the EAT can be an independent cardiovascular risk factor. Second, some of the correlations between the mito-
chondrial respiratory capacity in the EAT and the severity of coronary artery stenosis were not significant when 
the analysis was performed only in CAD patients. Because most of our present CAD patients had multivessel 
disease and thus the range of Gensini scores in the CAD group was small, we could not detect a significant cor-
relation. Finally, we cannot conclude that there is a causal relationship between the severity of coronary artery 
stenosis or protein levels of adiponectin and the mitochondrial respiratory capacity in the EAT.

In summary, the mitochondrial respiratory capacity in the EAT was significantly lowered in CAD patients. 
The lowered mitochondrial respiratory capacity in the EAT, but not the increased EAT volume, was closely cor-
related with the severity of coronary artery stenosis. In addition, the protein level of the adiponectin in the EAT 
was reduced in CAD patients, in association with the lowered mitochondrial respiratory capacity in the EAT 
and severity of coronary artery stenosis. Our data support the hypothesis that impaired EAT mitochondrial res-
piratory capacity plays a crucial role in the progression of coronary atherosclerosis, at least in part via a reduced 
synthesis of adiponectin in the EAT.

Methods
Study patients.  EAT samples were obtained from 25 patients who underwent elective cardiac surgery with a 
median sternotomy and cardiac arrest at either of Hokkaido University Hospital or Teine Keijinkai Hospital dur-
ing the period from July 2015 to August 2016. Patients who had undergone a prior cardiac surgery and patients 
with chronic inflammatory disease, cancer, or chronic kidney disease with current hemodialysis were excluded.

Of the 25 patients, 12 patients underwent coronary artery bypass surgery and the other 13 patients underwent 
cardiac surgery for reasons unrelated to atherosclerosis (e.g., mitral valve regurgitation). The 12 coronary artery 
bypass patients and two of the patients who underwent cardiac surgery other than coronary artery bypass sur-
gery with a history of myocardial infarction were allocated to the CAD group (n = 14). The other patients who 
underwent cardiac surgery with no coronary artery stenosis (≥75% in at least one vessel was defined as significant 
stenosis) and with no history of myocardial infarction or percutaneous coronary intervention were allocated 
to the non-CAD group (n = 11). During the surgery performed for each patient, before the cardiopulmonary 
bypass was performed, the EAT was excised from the fat depot on the anterior wall near the aortic root within 
the pericardium.

The study protocol was approved by the ethical committees from the institutions involved (Hokkaido 
University Hospital and Teine Keijinkai Hospital) and performed according to the Declaration of Helsinki. 
Written informed consent was obtained from each patient before the surgery. This study was registered in the 
UMIN Clinical Trials Registry: UMIN000018137.

Preparation of EAT samples.  After EAT was obtained during the surgery, the tissue sample was quickly cut 
into three pieces. The first piece was transferred on the day of the surgery to an ice-cold relaxing solution (BIOPS, 
in mmol/L: CaK2EGTA 2.77, EGTA 7.23, taurine 20, MgCl2 6.56, ATP 5.77, phosphocreatine 15, dithiothreitol 
0.5, 4-morpholineethanesulfonic acid 50, pH 7.1) for the measurement of the mitochondrial respiratory capacity 
and the mitochondrial reactive oxygen species (ROS) emission in the permeabilized EAT. The second piece of 
tissue was stored in PAXgene solution (Qiagen, Hilden, Germany) for the later histological analysis. The third 
piece was frozen in liquid nitrogen and stored at −80 °C for the analysis of the protein content of the adiponectin.

Mitochondrial respiratory capacity in the EAT.  We measured the mitochondrial respiratory capacity 
of the permeabilized EAT at 37 °C using a high-resolution respirometry (Oxygraph-2k, Oroboros Instruments, 
Innsbruck, Austria) as described15,22. After a careful manual dissection of the capillaries and connective tissues 
with the use of a magnifying glass, sample tissues (approx. 50 mg) were put into the respirometer chamber filled 
with 2 mL of MiR05 (in mmol/L: sucrose 110, K-lactobionate 60, EGTA 0.5, 0.1% BSA, MgCl2 3, taurine 20, 
KH2PO4 10, HEPES 20, pH 7.1). Digitonin (2 μmol/L) was added to the chamber to permeabilize the tissue 
samples.

After the stabilization of baseline respiratory rates, the following respiratory substrates, ADP, and an uncou-
pler were added in the following order as described15: (1) glutamate (final concentration, 10 mmol/l) and malate 
(2 mmol/L) (complex I-linked substrates); (2) ADP (5 mmol/L); (3) octanoyl-l-carnitine (0.15 mmol/L) (a fatty 
acid); (4) succinate (10 mmol/L) (a complex II-linked substrate); (5) cytochrome c (10 μmol/L); and (6) titration 
of carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP; 0.5 µmol/L increments) (an uncoupler). The 
integrity of the outer mitochondrial membrane was tested by the addition of cytochrome c. An increase in oxygen 
consumption rate indicates damaged outer mitochondrial membrane because cytochrome c does not pass the 
intact outer mitochondrial membrane23, but in this study, there was no increase in oxygen consumption rate after 
addition of cytochrome c in all patients. The respiratory rate (i.e., the O2 consumption rate) values are expressed 
as the O2 flux normalized to the permeabilized tissue mass (pmol/s/mg wet weight of EAT).

Immunohistochemical staining of adiponectin in the EAT.  The EAT samples had been fixed with the 
PAX gene tissue system (Qiagen) and embedded in paraffin. All paraffin blocks were prepared as 5-µm-thick tis-
sue sections. The sections were deparaffinized and heated in citric acid buffer (pH 6.0, 95 °C) for antigen retrieval. 
After a 10-min incubation with 0.3% hydrogen peroxide, the sections were incubated with anti-adiponectin 
mouse monoclonal antibody (19F1, ×800, ab22554, Abcam, Cambridge, UK) for 60 min followed by the second-
ary antibody EnVision (Agilent Technologies, Santa Clara, CA) for 30 min. Next, a brown-colored staining pat-
tern was obtained with the use of 3,3′-diaminobenzidine (DAB) staining. Hematoxylin staining was then added 
for counter-staining. All incubations were performed at room temperature.
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Protein content of the adiponectin in the EAT.  Total protein from the EAT was extracted by using a 
total protein extraction kit for adipose tissues according to the manufacturer’s instructions (101Bio, Palo Alto, 
CA). The protein concentration of the adiponectin in the EAT was measured with a Quantikine ELISA kit (R&D 
Systems, Boston, MA). Simultaneously, the total protein concentration was determined by a bicinchoninic acid 
assay (Sigma-Aldrich, St. Louis, MO), and the protein concentration of the adiponectin was adjusted for the total 
protein concentration in the individual tissue samples, expressed as ng/mg total protein. The data of protein con-
tent of adiponectin in one CAD patient were not available due to the lack of an EAT sample.

EAT volume and visceral abdominal fat area.  Computed tomography (CT) was conducted in each patient 
within 1 month before the patient’s cardiac surgery. We estimated the the EAT volume by adding up the EAT area 
at each axial non-contrast slice multiplied by the slice thickness, using a dedicated offline workstation (Vox-Base; 
J-MAC System, Sapporo, Japan) as described24. The axial continuous slices were chosen for their consistency from 
the level of the right pulmonary artery splitting from the main pulmonary trunk to the level of the coronary sinus.

In addition, we measured the visceral abdominal fat area with an axial non-contrast CT slice at the patient’s 
umbilical level using the Vox-Base.

Gensini score.  For the evaluation of the severity of coronary artery stenosis, we used the Gensini scoring sys-
tem as described25. The Gensini score was calculated based on the coronary angiography findings obtained within 
1 month before the patient’s cardiac surgery. This score is the sum of all coronary artery segment scores where 
each segment score equals a predetermined segment weighting factor multiplied by the severity score. Specifically, 
percentage luminar diameter reductions of 25%, 50%, 75%, 90%, 99%, and complete occlusion were given the 
severity scores of 1, 2, 4, 8, 16 and 32, respectively. A high Gensini score indicates severe coronary artery stenosis.

Statistical analysis.  Data are expressed as the mean ± standard deviation (SD). We used unpaired t-tests to 
compare the values of the CAD and non-CAD groups. We examined correlations by performing a linear regres-
sion analysis using Pearson’s correlation coefficient. Statistical analyses were performed using GraphPad Prism 
7.0a software (GraphPad Software, San Diego, CA), and significance was defined as P < 0.05.
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